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The hyperparameters of SVM

C that determines the costs 

associated to incorrectly classifying 

datapoints is an open parameter of 

the optimization function
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Effect of the penalty factor C

RBF kernel width=0.20; C=1000; several misclassified datapoints
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RBF kernel width=0.20; C=2000; fewer misclassified datapoints

Effect of the penalty factor C
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The original objective function:
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Hyperparameters for SVM

Determining C may be difficult in practice
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-SVM

Introduce a new variable  to control for the lower bound on  and 

add a hyperparameter 0 1 to control for its effect in the objective function. 

The optimization problem becomes:
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 is an upper bound on the fraction of margin error (i.e. 

the number of datapoints misclassified in the margin)

 is a lower bound on the ratio: support vectors / number 

of datapoints. 

-SVM

,      : number of SV
p

p
M

 



MACHINE LEARNING

8

ADVANCED MACHINE LEARNING

-SVM: Exercise
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Show that  is a lower bound on the ratio:
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Hint: The dual problem is
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Increase in the number of SV-s with =0.9

-SVM: Example of effect of choice of 
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Increase in the number of SV-s with =0.2

-SVM: Example of effect of choice of 



MACHINE LEARNING

11

ADVANCED MACHINE LEARNING

-svm =0.001, rbf kernel width 0.1

-SVM: Example of effect of choice of 
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Increase in the error with =0.9

-SVM: Example of effect of choice of 
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Good classification with =0.2

-SVM: Example of effect of choice of 
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Relevance Vector Machine (RVM)

(sparse SVM)

 see supplement (Tipping, IJML 2001) – sparse classification technique
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SVM Limitation

Predicts correctly class label even when it has no datapoint

SVM does not entail a notion of confidence! (no notion of likelihood )

→ You cannot tell if prediction is correct or not!

→ Crossvalidation is hence crucial, but still no guarantee that prediction is correct
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SVM – no confidence in prediction

Predicts by default sign of b when far from the training datapoints!!

→ This could lead to large amount of false positives for the class with same sign as b!

Generalization: Predicts class label even when it has no datapoint

Prediction could be completely incorrect
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What happens here?

Doing crossvalidation would not prevent this effect as it would use only points at 

your disposal. It does not test for unseen datapoints.
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SVM – confidence in prediction

What happens here?

❑ False positives must be treated with care.

❑ Imagine you classify images of cancer tissue and you want to predict if 

the tissue has a tumor (positive class) or no tumor (negative class); 

you cannot afford false positive for the negative class.

❑ To prevent this to happen, you should:

❑ Verify that the sign of b is not the sign of the class you care about.

❑ Run crossvalidation by generating a testing set from points never

seen – far from your training set.
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Relevance Vector Machine (RVM)

RVM was offered to address three shortcomings of standard SVM:

1) Even though SVM usually results in a relatively small number of support 

vectors compared to total number of data-points, nothing ensures that a 

sparse solution is obtained. The number of SV tends to grow “linearly” 

with the number of training datapoints.

2) Unlike other bayesian techniques (e.g. GMM classification using naïve 

Bayes), SVM’s prediction are not accompanied by a metric measuring the 

confidence of the model’s prediction.

3) SVM requires also to find hyper-parameters (C, ) and to have special 

form for the basis function (the kernel must satisfy the Mercer conditions).

RVM relaxes assumption 3 and takes a Bayesian approach to estimate the 

model’s parameters. The Bayesian framework captures the uncertainty of the 

prediction. It also results in a sparse version of classical SVM.
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Relevance Vector Machine

Start from the solution of SVM (dropping the sign function – provides 

regression solution first, see slides on non-linear regression)
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as a linear combination over 

M basis functions

A sparse solution has a majority 

of entries with alpha zero.
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Relevance Vector Machine

The problem consists in finding the parameters 

The problem is made easy in that it is linear in the parameters. 

Rewrite the solution of SVR in a compact form such that the problem is 

linear in the parameters:
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Relevance Vector Machine
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Take a Bayesian approach and assume that all samples 

are i.i.d and that they are measurements of the real value  

subjected to white noise , i.e.:
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Rewrite the solution of SVR in a compact form such that the problem is 

linear in the parameters:



MACHINE LEARNING

22

ADVANCED MACHINE LEARNING

Relevance Vector Machine
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Since the measurement are i.i.d, the likelihood of the model is given by:
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Question: What is the result if we estimate the  parameters

through maximum likelihood?



Doing maximum likelihood would lead to overfitting, as we have as many parameters as 

datapoints (or more if we consider the variance of the noise too).

E.g. with rbf kernel for basis functions, all alphas are +/-1 putting one rbf function on each 

datapoint.

→ idea: approximate the distribution of the  with a probability density function which 

reduces the number of parameters to estimate.
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Relevance Vector Machine

( )Introduces a on the distribution of the parameters, i.e. ,
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Relevance Vector Machine
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Prior distribution is zero-mean with variance .

 is a set of  parameters that controls for the breadth of values taken by 
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Question 1: Why zero-mean?

One cannot compute the optimal alpha in closed form. One must use an iterative 

procedure similar to expectation maximization. The procedure differs depending 

on whether we consider the classification or regression case.

(see Tipping 2001, supplementary material, for details).

Equivalent to the KKT condition: 0i i
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Solving the problem now requires estimating

the optimal set of parameters, i.e. all the , ,  and i i i M   
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Relevance Vector Machine

This parameter is a stopping criterion for the optimization. It 

determines how good the fit is. The smaller the value, the closer 

the true parameters are fitted.

[0,1] 
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Relevance Vector Machine
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Relevance Vector Machine

RVM with kernel width = 0.01

477 datapoints, 19 support vectors
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Relevance Vector Machine

SVM with C=1000, kernel width = 0.01

477 datapoints, 51 support vectors
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Relevance Vector Machine

Notice the notion of uncertainty of the model encapsulated in the distribution

(shadings of grey and red)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: SVM Limitation
	Slide 16: SVM – no confidence in prediction
	Slide 17: SVM – confidence in prediction
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

