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1-SVM
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The hyperparameters of SVM

C that determines the costs

1 5 v associated to incorrectly classifying
min —ku + o datapoints is an open parameter of
2 M j=17]

w,g the optimization function
Uu.C.

y (W - X! +b)21—§j,

fj >0 vV i=1,..M
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Effect of the penalty factor C
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RBF kernel width=0.20; C=1000; several misclassified datapoints
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Effect of the penalty factor C
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RBF kernel width=0.20; C=2000; fewer misclassified datapoints
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Hyperparameters for SVM

The original objective function:

Determining C may be difficult in practice
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v-SVM

Introduce a new variable p to control for the lower bound on |w|| and

add a hyperparameter 0 <v <1 to control for its effect in the objective function.
The optimization problem becomes:

min(”w”z ﬁZéj

W,S,p

subject to y' ((w,x')+b) z@} &
and & > O,
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v-SVM

v IS an upper bound on the fraction of margin error (i.e.
the number of datapoints misclassified in the margin)

v IS a lower bound on the ratio: support vectors / number
of datapoints.

vsﬁp, P : number of SV
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v-SVM: Exercise

Show that v is a lower bound on the ratio:

v < ﬁp p : number of SV, M : number of datapoints

Hint: The dual problem is

miin EL(al,....aM):_%ia@jk(xi,xi))

i) j=1

subject to

ioxiyi =0; 0< ¢, <1/ M; iai >y
=1 =1
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v-SVM: Example of effect of choice of v

Increase in the number of SV-s with v=0.9
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v-SVM: Example of effect of choice of v
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Increase in the number of SV-s with v=0.2
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v-SVM: Example of effect of choice of v
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v-svm v=0.001, rbf kernel width 0.1
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v-SVM: Example of effect of choice of v

Increase in the error with v=0.9
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v-SVM: Example of effect of choice of v

Good classification with v=0.2
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Relevance Vector Machine (RVM)
(sparse SVM)

see supplement (Tipping, IJML 2001) — sparse classification technique
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SVM Limitation

Predicts correctly class label even when it has no datapoint goaassoE

SVM does not entail a notion of confidence! (no notion of likelihood )
—> You cannot tell if prediction is correct or not!
- Crossvalidation is hence crucial, but still no guarantee that prediction is correct
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SVM — no confidence In prediction

Generalization: Predicts class label even when it has no datapoint
Prediction could be completely incorrect
. 5 N L ———
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|to compute b.

________________________________________________________________________

Predicts by default sign of b when far from the training datapomts”
—> This could lead to large amount of false positives for the class with same sign as b!

Doing crossvalidation would not prevent this effect as it would use only points at
your disposal. It does not test for unseen datapoints.
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SVM - confidence In prediction

O False positives must be treated with care.

O Imagine you classify images of cancer tissue and you want to predict if
the tissue has a tumor (positive class) or no tumor (negative class);
you cannot afford false positive for the negative class.

U To prevent this to happen, you should:
O Verify that the sign of b is not the sign of the class you care about.
O Run crossvalidation by generating a testing set from points never
seen — far from your training set.
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Relevance Vector Machine (RVM)

RVM was offered to address three shortcomings of standard SVM:

1) Even though SVM usually results in a relatively small number of support
vectors compared to total number of data-points, nothing ensures that a
sparse solution is obtained. The number of SV tends to grow “linearly”
with the number of training datapoints.

2) Unlike other bayesian techniques (e.g. GMM classification using naive
Bayes), SVM'’s prediction are not accompanied by a metric measuring the
confidence of the model’s prediction.

3) SVM requires also to find hyper-parameters (C, v) and to have special
form for the basis function (the kernel must satisfy the Mercer conditions).

RVM relaxes assumption 3 and takes a Bayesian approach to estimate the
model’s parameters. The Bayesian framework captures the uncertainty of the

prediction. It also results in a sparse version of classical SVM.
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Relevance Vector Machine

Start from the solution of SVM (dropping the sign function — provides
regression solution first, see slides on non-linear regression)

Rewrite the solution of SVM
as a linear combination over
M basis functions

In the (binary) classification case, y [0;1].
In the regression case, y € R.
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Relevance Vector Machine

Rewrite the solution of SVR in a compact form such that the problem is
linear in the parameters:

y(x)= f(x):izhj;oci k(x,xi)+=lz
) =

y()LQP(x). ¥ (x)=| vy (%) vy (X)ty, (x)]T vy (x)=1

The problem consists in finding the parameters a.
The problem is made easy in that it is linear in the parameters.
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Relevance Vector Machine

Rewrite the solution of SVR in a compact form such that the problem is
linear in the parameters:

M

y(x)="f(x)=> ¢ k(x,x‘)+ b

izl ~——— =g

v; (%)
\

Take a Bayesian approach and assume that all samples y;,

are i.i.d and that they are measurements of the real value o ¥ (x')
subjected to white noise ¢, i.e.:
y; ()= aT\P(xi)+5, e~N(0,0,)
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Relevance Vector Machine

Since the measurement are i.1.d, the likelihood of the model is given by:

M M _izuyi —a¥(x )H2

L(a)=]]p(v|x;a.0,)~ Ie g

i=1 i

Question: What is the result if we estimate the « parameters
through maximum likelihood?

Doing maximum likelihood would lead to overfitting, as we have as many parameters as
datapoints (or more if we consider the variance of the noise t00).

E.g. with rbf kernel for basis functions, all alphas are +/-1 putting one rbf function on each
datapoint.

—> idea: approximate the distribution of the o with a probability density function which
reduces the number of parameters to estimate.
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Relevance Vector Machine

y(x>=<x), ()= () vy ()i ()] v (6)=1

Introduces a prior on the distribution of the parameters, i.e. p(«),

to prevent them from taking arbitrary values.

Sparsity is obtained when the distribution is sharply peaked p(a)

at zero, e.g. E{p(a)}~0and var{p(a)}<<1
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Relevance Vector Machine

Prior distribution is zero-mean with variance o.
o Is a set of M parameters that controls for the breadth of values taken by
the o :

p(e)=~N(e;0,0;)

Solving the problem now requires estimating

the optimal set of parameters, i.e. all the {«;, 0;,} and o,

i=0..M

One cannot compute the optimal alpha in closed form. One must use an iterative
procedure similar to expectation maximization. The procedure differs depending
on whether we consider the classification or regression case.

(see Tipping 2001, supplementary material, for details).
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Relevance Vector Machine

Algorithm Options x|
Classifica. .. | Cluste... I Regres... I Projecti... | Dyna... | Optimiza... | Reinforcement Lear... |

Classify
[T Force Binary I] 3:
Kernel Clear
-ain [ Test ratio I 100% "’I
REF j Load | Save

Input Dimensions

Show ROC |
Manual Selection

Compare

A [0,1]}

This parameter is a stopping criterion for the optimization. It
determines how good the fit is. The smaller the value, the closer
the true parameters are fitted.
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Relevance Vector Machine
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Relevance Vector Machine

IR
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RVM with kernel width = 0.01

477 datapoints, 19 support vectors
OGBS .,
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Relevance Vector Machine

SVM with C=1000, kernel width = 0.01

477 datapoints, 51 support vectors
o
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Relevance Vector Machine

Notice the notion of uncertainty of the model encapsulated in the distribution
(shadings of grey and red)
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